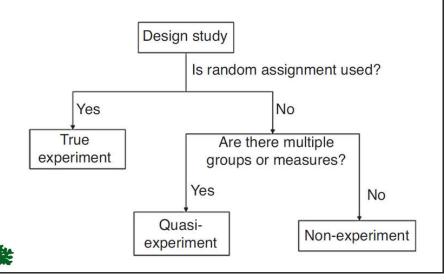


Chapter 3 **Experimental Design**Research

Methods

By: Mamoun Nawahdah (PhD) 2018


Overview

- What needs to be considered when designing experiments?
- Determining the basic design structure
- Investigating a single independent variable
- Investigating more than one independent variable
- Reliability of experimental results
- Experimental procedures

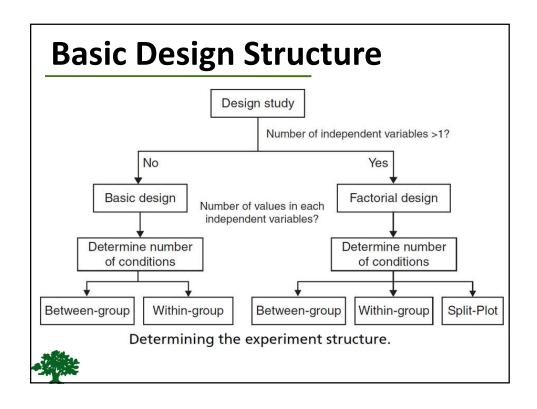
Three Groups of Studies

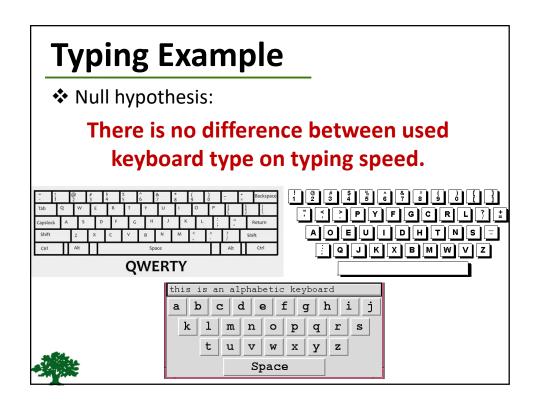
Experiments, quasi-experiments, and non-experiments:

Characteristics of True Experiments

- ❖ A true experiment:
 - Is normally based on at least one hypothesis
 - Have multiple conditions
 - The dependent variable can be quantitatively measured
 - Uses statistical significance tests
 - Thrives to remove biases
 - Is replicable

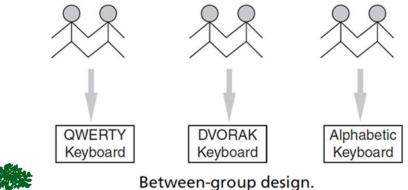
Factors to Consider


- ❖ Research hypothesis:
 - Clearly defined
 - Appropriate scope
- Dependent variables:
 - Easy to measure
- Independent variables and conditions:
 - Easy to control



Basic Design Structure

- ❖ Two basic questions:
 - How many independent variables do we want to investigate in the experiment?
 - How many different values does each independent variable have?

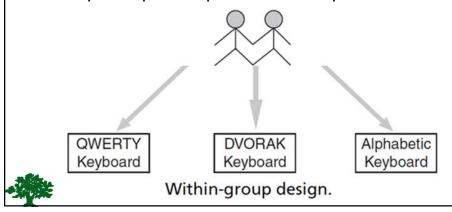


Investigating one IV - Between Group Design

- ❖ Also called "between subject design"
- One participant only experience one condition

- All Park

Between-group design


Between Group Design

- Advantages:
 - Cleaner, better control of learning effect
 - Requires shorter time for participants
 - Less impact of fatigue and frustration
- Disadvantages
 - Impact of individuals difference
 - Harder to detect difference between conditions
 - Require larger sample size

Investigating one IV – Within Group Design

- ❖ Also called "within subject design"
- One participant experience multiple conditions

Within-Group Design

- ❖ Advantages:
 - Requires smaller sample size
 - Easy to detect difference between conditions
- Disadvantages:
 - Learning effect
 - Takes longer time
 - Larger impact of fatigue and frustration

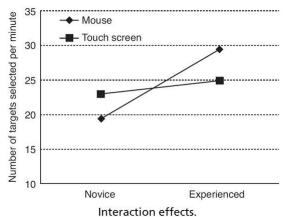
Investigating one IV - Between Group vs. Within Group

- ❖ Between-group design should be taken when:
 - Simple tasks
 - Learning effect has large impact
 - Within-group design is impossible
- ❖ Within-group design should be taken when:
 - Learning effect has small impact
 - Small participant pool

More than One IV

- ❖ Factorial design divides the experiment groups or conditions into multiple subsets according to the independent variables.
- Can study interaction effects.
- Number of conditions:

$$C = \prod_{a=1}^{n} Va$$


More than One IV

- Three options of factorial design:
 - Between group design
 - Within group design
 - Split-plot design
- ❖ Split-plot design:
 - Has both a between-group and a withingroup component

Interaction Effect

The differing effect of one IV on the DV, depending on the particular level of another IV

Reliability of Experiments

❖ Random errors:

- Also called 'chance errors' or 'noises'
- Cause variations in both direction
- Occur by chance
- Can be controlled by a large sample size

Systematic errors:

- Also called 'biases'
- Always push actual value in the same direction

Can never be offset no matter how large the sample is

Reliability of Experiment Results

- ❖ 5 major sources of system errors:
 - Measurement instruments
 - Experimental procedures
 - Participants
 - Experimenter behavior
 - The experimental environment

Lifecycle of an Experiment

- Identify a research hypothesis
- Specify the design of the study
- Run a pilot study to test the design, the system, and the study instruments
- Recruit participants
- Run the actual data collection sessions
- Analyze the data
- Report the results

Experiment Session Procedure

- Ensure the systems or devices being evaluated and the related instruments are ready for the experiment
- Greet the participants
- Introduce the purpose of the study and the procedures
- Get the consent of the participants
- Assign the participants to a specific experiment condition according to the pre-defined randomization method

Experiment Session Procedure

- Participants complete training task
- Participants complete actual tasks
- Participants answer questionnaires (if any)
- Debriefing session
- Payment (if any)

